Rubidium Oscillator Design

John Willison Stanford Research Systems, Inc. www.thinkSRS.com National Synchronization Workshop Orlando, Florida. May 8, 2001

Why Rubidium?

- Reliable, mature technology
- Low aging and low environmental coefficients
- Excellent short term stability
- Stratum-1 when mated with GPS
- Low cost

Phase Locking to GPS

The PRS10 Rubidium Frequency Standard

•Standard mechanical and electrical form-factor

•Updated technology

•Feature rich, high-end performance

•Established reliability

Important Specifications

- 10MHz, +7dBm, 50Ω , sine output
- L(f) < -125 dBc / Hz at 10 Hz offset
- $\Delta f/f < \pm 5 \ge 10^{-11}$ (over -20°C to +65°C)
- $\Delta f/f < \pm 5 \ge 10^{-11}$ (aging per month)
- RS232 control and calibration

The Physics Package

- Lamp
- Resonance cell
- RF source
- Photocell

•The physics package is a frequency detector. The light seen by the photocell is reduced by about 1:1000 when the RF sweeps through 6,834,682,612 Hz. The linewidth of the detector is $\Delta f/f \approx 10^{-7}$.

Block Diagram

- 10 MHz SC-cut ovenized oscillator
- RF synthesizer
- Frequency lock-loop
- Microprocessor based design

Frequency Spectrum of Photo-Signal

- Modulate RF around resonance at 70 Hz
- When centered, see only 140 Hz signal (2ω)
- When off frequency, see component at 70 Hz.
- Synchronously detect signal at 70 Hz and adjust VCXO via DAC to null
- Signal-to-noise at a glance

Microprocessor Functions/Advantages

- Housekeeping, DACs, ADCs, and program synthesizer
- 70 Hz modulation of RF and synchronous detection
- Digital filtering of control signal (no modulation spurs)
- Time-tag input with 1ns resolution
- Automatic phase-lock to reference (such as GPS)
- 1 PPS output set with 1ns resolution
- RS232 communications with host system
- Smooth startup and glitch immunity
- Magnetic field commutation (x25 reduction of $\Delta f/B$)

SRS Design

SRS Stanford Research Systems

Warm-up Profiles

50 Hz/div

0.1 Hz/div

0.005 Hz/div

(first 8 minutes)

Analog Design

Magnetic Field Switching

- Small frequency adjustments are done via C-field
- External fields add to C-field and cause a frequency offset
- C-field is toggled at 5 Hz
- Positive frequency offset for half cycle, negative for other
- Digitally sum to null effect
- Result: 25x reduction in sensitivity to external fields

SC-Cut Ovenized Oscillator Advantages

- Smooth start-up, re-start and holdover
- Allows long rubidium lock time-constants
 - Lower lamp drive level
 - Immunity from microphonics
 - Immunity to glitches
- No activity dips
- Very low phase noise

Single-Sideband Phase Noise

About Discharge Lamps

- Extended high-temp bake-out
- 5x Isotopic Rb overfill prevents log(t) Rb depletion
- Side-arm cell prevents flicker
- Demonstrated reliability
 - Study of 4000 units
 - 1.6×10^{7} unit-hrs
 - zero lamp failures

Cells and Lamps

Distillation of rubidium metal from manifolds into cells and lamps.

Electronics

• Automatic SMD pick-andplace onto single sheet

•Oven oscillator sub-assemblies

Oscillator and Physics Package

- Resonance cell
- Discharge lamp
- Oven oscillator

Completed Units

Five Week Burn-in

- In-situ calibration
- Complete logging
 - output frequency
 - lamp intensity
 - VCXO aging
 - lock-loop
 - 20 additional analog test points
 - tempco's
 - 8 x 10⁶ unit-hr/yr

Burn-in Data Logged Every 20 Minutes

😵 Rubidium Calibration - COM1 📃 🗖 🖂												
Ē	<u>File Options</u>											
1	RS232 Communications Rb Stats 1 pps Calibration RF Graph Lamp Start Shipping											
	PRS10_3.15_SN_3124					date	Do Stats	COM1 🔽 🗆 Mo		Monitor 🗖 SF		
	Factory Settings An				alog Output Values			1pps Control				
	sd0	135	Step Rec. Diode		ad0	0.003	Spare	то	-1804	Time Offset		
	sd1	128	Delay Value		ad1	2.326	+24 Volt Heat.	TS	13980	Time Slope		
	sd2	55	Fet Voltage Set		ad2	2.331	+24 Volt Elec.	PS	196	Pulse Slope		
	sd3	150	Lamp Temp. Set		ad3	0.495	Lamp Drain	PL	1	Phase Lock		
	sd4	198	Crystal Temp. Set		ad4	0.303	Lamp Gate	PT	14	Time Constant		
	sd5	190	Cell Temp. Set		ad5	2.326	Crystal Heat Ctrl	PF	2	Stability Factor		
	sd6	124	Output Voltage		ad6	2.375	Cell Heat Ctrl	PI	-1	Integral Term		
	sd7	200	RF Modulation		ad7	1.621	Lamp Heat Ctrl	LM	1	Lock Mode		
	R	5077	SP Param. (PLL)		ad8	1.942	AC Photosignal					
	N	N 2853			ad9	3.187	Photocell I/V	Statistics				
	A	38			ad10	0.645	Case Temp.	FCI	vlean	1660.42		
	SF	8	Calibration Pot		ad11	0.945	Xtal Thermistors	FCE	Bits/Hz	75.44		
	SS	1289	Set Slope		ad12	0.950	Cell Thermistors	FCS	Std. Dev.	0.08		
	мо 🛛	2439	Mag. Offset		ad13	0.975	Lamp Thermistors	FC Dev. E-12		110.35		
	MR	2441	Mag. Read		ad14	2.510	Frequency Pot	W1 Bits/Hz		198161		
	MS	1	Mag. Switching		ad15	0.003	Analog Ground	📕 W1 Mean		11.06		
	LO LO	LO 1 Lock			ad16	2.540	22MHz Varactor	W1 Std. Dev.		74.07		
	GA GA	7	Gain		ad17	3.250	360MHz Varactor	W1	SNR	5982.29		
	PH	24	Phase		ad18	3.430	Auto Gain Ctrl	W2	Mean	851.41		
	EP EP	1	Enable Power		ad19	4.760	RF Lock	W2	Std. Dev.	3.04		
	FC	1660.24	10MHz DAC					SFE	Bit Size	0.86		
	DS	-56,849	Signal Values					Syn	th. Offset	-0.4841		

Burn-in Data Plots (20 Days Shown)

Quality and Reliability

From a study of 4000 units shipped over two-years:

- Incoming inspection:
 - 18 of 4000 units rejected by customer
 - Implies an AQL = 0.45%
- Field failures:
 - 9 failures in 16.4 million hours of operation
 - Implies an MTBF = 1.8×10^6 hours

Advantages of SRS Rubidium Design

- Spur-free output with ultra-low phase noise
- Excellent holdover during rare failures
- Lamp wear-out mechanisms eliminated
- Time-tags and phase locks to external source
- Closed case calibration and control
- Established reliability

